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Space plasmas in various astrophysical setups can often be both very hot and dilute, making them highly susceptible to
waves and fluctuations, which are generally self-generated and maintained by kinetic instabilities. In this sense, we have
in-situ observational evidence from the solar wind and planetary environments, which reveal not only wave fluctuations
at kinetic scales of electrons and protons, but also non-equilibrium distributions of particle velocities. This paper reports
on the progress made in achieving a consistent modeling of the instabilities generated by temperature anisotropy, taking
concrete example of those induced by anisotropic electrons, such as, electromagnetic electron-cyclotron (whistler) and
firehose instabilities. The effects of the two main electron populations, the quasi-thermal core and the suprathermal
halo indicated by the observations, are thus captured. The low-energy core is bi-Maxwellian, and the halo is described
for the first time by a regularized (bi-)κ-distribution (RKD), which was recently introduced to fix inconsistencies of
standard κ-distributions (SKD). In the absence of a analytical RKD dispersion kinetic formalism (involving tedious
and laborious derivations), both the dispersion and (in)stability properties are directly solved numerically using the
numerical Arbitrary Linear Plasma Solver (ALPS). The results have an increased degree of confidence, considering the
successful testing of the ALPS on previous results with established distributions.

Credits and permissions: This article may be downloaded
for personal use only. Any other use requires prior permis-
sion of the author and AIP Publishing. This article appeared
in Phys. Plasmas 32, 032109 (2025) and may be found at
https://doi.org/10.1063/5.0254526.

I. INTRODUCTORY MOTIVATION

Understanding the dynamics of space plasmas, such as the
solar wind and planetary environments, presumes modeling
particle velocity distributions (Kasper, Lazarus, and Gary,
2002; Štverák et al., 2008; Gary, 2015; Wilson et al.,
2019a,b; Lazar and Fichtner, 2021). Since these plasmas are
hot and sufficiently diluted, the velocity distributions of the
particles are often not in thermal equilibrium, as also proven
by in-situ observations that show the presence of suprather-
mal populations and kinetic anisotropies (Verscharen, Klein,
and Maruca, 2019). For the same reasons, collisions are rare,
and we expect that the transport of momentum and energy
is governed primarily by waves/fluctuations and turbulence
(Marsch, 2006; Pierrard, Lazar, and Schlickeiser, 2011; Pier-
rard and Pieters, 2014; Yoon, 2015).

Observations consistently report electromagnetic fluctua-
tions at kinetic proton and electron scales within the solar
wind and planetary magnetospheres, although their origins are
not fully understood (Jian et al., 2009; Verscharen, Klein,
and Maruca, 2019). Large-scale perturbations from the so-
lar atmosphere’s coronal outflows are conveyed by the super-
Alfvénic solar wind and decay to smaller scales where dissipa-
tion occurs. Instead, locally generated fluctuations measured
in-situ at small proton and electron scales can emerge from

kinetic instabilities driven by non-thermal features in parti-
cle velocity distribution functions (VDFs), such as tempera-
ture anisotropy and particle beams (Štverák et al., 2008; Bale
et al., 2009; Wilson et al., 2013; Gary, 2015; Gary et al.,
2016; Woodham et al., 2019). It therefore follows that the im-
plications of these waves and fluctuations can be understood
by decoding the wave dispersion and stability properties of the
observed non-equilibrium distributions.

To describe these distributions, the more advanced are the
κ-power-law models, which can reproduce the main kinetic
anisotropies, but especially the suprathermal populations with
enhanced high-energy tails (Maksimovic et al., 2005; Štverák
et al., 2008; Lazar et al., 2017; Wilson et al., 2019a,b;
Scherer et al., 2021). The κ-distribution was introduced more
than five decades ago as a global empirical model, incorpo-
rating not only the suprathermal populations but also the qua-
sithermal core population at low energies (Olbert, 1968; Va-
syliunas, 1968). Later, the modeling of the electron distri-
butions observed in-situ was refined, differentiating between
the (bi-)Maxwellian core and the suprathermal halo popula-
tion reproduced by the (bi-)κ-distributions (Maksimovic et al.,
2005; Štverák et al., 2008; Wilson et al., 2019a). What was
revealed was that the core and the halo can have distinct and
even opposite anisotropies, e.g., with respect to the interplan-
etary magnetic field direction (Pierrard et al., 2016). These
properties are particularly important for the analysis of waves
and instabilities, where κ-distributions have been widely ex-
ploited (see reviews by Hellberg, Mace, and Cattaert, 2005;
Pierrard and Lazar, 2010; Shaaban et al., 2021).

More recently, there has been a series of advances in em-
ploying these models in a consistent manner, as reported in
Lazar and Fichtner (2021). Remarkable is the adjustment
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to the so-called regularized κ-distributions (RKD), (Scherer,
Fichtner, and Lazar, 2018), for which the values taken by κ
power exponents are no longer restricted; see also the de-
tailed discussion in Section II below. The moments of the
standard κ-distribution (SKD) and the corresponding transport
coefficients are not well-defined for all values of κ (Scherer,
Fichtner, and Lazar, 2018). The RKD is a novel approach to
alleviate this shortcoming of the SKD. For RKDs, the mo-
ments are well-defined for all κ > 0. Compared to the SKD,
however, the RKD carries increased mathematical complexity
which precludes the analytical evaluation of the general lin-
ear dispersion relation in systems with an RKD background
(Scherer et al., 2019; Lazar et al., 2020; Husidic et al.,
2022). Attempts to derive dielectric response of plasma elec-
trons with RKD are so far only known for longitudinal elec-
trostatic waves (Scherer, Fichtner, and Lazar, 2018; Gaelzer,
Fichtner, and Scherer, 2024). The derivation of the dielec-
tric properties is even more difficult in the case of magnetized
plasmas with anisotropic RKD distributions.

Therefore, in this paper we motivate the use of the Arbi-
trary Linear Plasma Solver (ALPS) (Verscharen et al., 2018),
for a direct numerical evaluation of the dispersion and stability
properties of RKD plasmas. We address a series of instabili-
ties driven by temperature anisotropy of electron populations,
which are often invoked to explain their properties, in particu-
lar the anisotropy limitations revealed by in situ observations
(Štverák et al., 2008; Xu and Chen, 2012; Lazar et al., 2017;
Shaaban et al., 2019; Yoon et al., 2024). Thus, for a tem-
perature excess in the direction perpendicular to the magnetic
field, A = T⊥/T∥ > 1 (where ∥,⊥ are directions with respect
to local magnetic field), linear theory predicts instabilities of
electromagnetic (EM) cyclotron modes, while for an oppo-
site anisotropy, A < 1, the kinetic firehose instabilities can be
excited. The present work restricts to the instabilities with
wavevectors that are parallel to the background magnetic field,
which are oscillatory (with finite wave frequency) and often
prove sufficiently effective in competition with the oblique
(aperiodic) excitations (Gary and Karimabadi, 2006; Shaaban
et al., 2019; Sarfraz et al., 2022). Husidic et al. (2020) ana-
lyzed the same instabilities using a global bi-RKD representa-
tion incorporating both the core and halo populations, which
they resolved with LEOPARD (Astfalk and Jenko, 2017), an-
other solver for arbitrary velocity distributions. Instead, here
we adopt a more complex but also more realistic dual distri-
bution of the electron populations, describing accordingly to
the observations a bi-Maxwellian core and, for the first time, a
bi-RKD halo. The test cases and the new results obtained with
ALPS are very promising, offering perspectives for extended
analysis of distribution models of even greater complexity.

The structure of the paper is as follows. We begin with
a brief summary of the theory of dual core-halo modeling
in Section II and of the numerics of wave instability in the
solver ALPS in Section III. This is followed with validating
the ALPS implementation against a series of previous results,
particularly those obtained by Lazar et al. (2017) for parallel
modes in plasmas with Maxwellian core and κ-halo in Section
IV, with focus on EMEC in Section IV A and on EFHI in part
IV B. The new results are presented and discussed in the first

and second parts of Section V. All findings are summarized in
the concluding Section VI.

II. CONSISTENT DUAL DISTRIBUTIONS: MAXWELLIAN
CORE PLUS REGULARIZED κ- HALO

κ-modelling is extensively utilized for diagnosing space
plasmas and conducting analysis of their kinetic properties,
such as Pierrard and Lazar (2010) or Lazar and Fichtner
(2022). The κ-distribution function resembles a Maxwellian
distribution at low energies but transitions to a power-law at
higher energies. This power-law feature allows for fitting the
observed high-energy tails of the solar wind electron distribu-
tion, enhanced by the so-called halo component, while repre-
senting the core with a Maxwellian (Maksimovic et al., 2005;
Štverák et al., 2008). In fact, the κ-model was introduced
as a global distribution incorporating both the core and halo
populations (Olbert, 1968; Vasyliunas, 1968; Maksimovic,
Pierrard, and Riley, 1997). This way it simplifies the analy-
sis by reducing the number of parameters, and makes it easier
to handle in both observational and theoretical studies. How-
ever, a global κ does not always provide an accurate fit to the
observed distributions, forcing the core and suprathermal pop-
ulations to share the same parameters, such as density, temper-
ature, and anisotropy, which is not fully justified (Maksimovic
et al., 2005; Štverák et al., 2008; Lazar and Fichtner, 2022).

More sophisticated or composed models can reproduce
multiple components with different properties, and generally
provide more accurate details of the observed distributions
(Maksimovic et al., 2005; Wilson et al., 2019a,b). For in-
stance, at large enough heliospheric distances (e.g., > 0.6 AU),
or in general in slow solar wind, the beaming (or strahl) elec-
trons are much less dense than the core and halo (ns << nh <
nc, with nc and nh the number densities of the core and halo
components and ns the number density of the strahl compo-
nent), and the observed distributions can be, when neglecting
the strahl component, better described by a dual Maxwellian-
κ-model. This usually includes a bi-Maxwellian for the core
(subscript c) at low energies, and a bi-κ for the suprathermal
halo (subscript h) (Maksimovic et al., 2005; Štverák et al.,
2008; Lazar et al., 2017):

f(v∥,v⊥) =
nc

n
fc(v∥,v⊥)+

nh

n
fh(v∥,v⊥). (1)

v∥,⊥ is the particle velocity parallel and perpendicular to the
magnetic background field and n = nc+nh represents the total
number density of plasma particles. Such a dual model can
then reproduce different (even opposite) anisotropies of the
core and halo, as indicated by various events (Pierrard et al.,
2016).

Thermal particle populations in a magnetized plasma, in
particular those with anisotropic temperatures (with respect
to the uniform magnetic field direction), are commonly be de-
scribed by a bi-Maxwellian distribution

fM(v∥,v⊥) = NM exp

− v2
∥

θ2M,∥
−

v2
⊥

θ2M,⊥

. (2)
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θM∥,⊥ =
√

2kBT M
∥,⊥
/m, with the Boltzmann constant kB, de-

notes the thermal speed of particles with mass m, associated
with the Maxwellian temperature T M

∥,⊥
(∥,⊥ denoting direc-

tions with respect to the magnetic field). The normaliza-
tion factor is given by NM = 1/(π3/2θM,∥θ

2
M,⊥). Early studies

have ignored the effects of suprathermal halo populations, and
widely described kinetic instabilities driven by anisotropic
temperatures, i.e., A = T⊥/T∥ , 1, limited to these idealized
bi-Maxwellian distributions (Gary, 1993).

Later studies have generalized the investigations of kinetic
instabilities by adopting a bi-κ-distribution, hereafter called
standard κ-distribution, also SKD for short (Lazar, Fichtner,
and Yoon, 2016)

fSKD
(
v∥,v⊥

)
= NSKD

1+ v2
∥

κΘ2
∥

+
v2
⊥

κΘ2
⊥


−κ−1

(3)

with normalization constant

NSKD =
1

π3/2Θ∥Θ
2
⊥

Γ(κ+1)
κ3/2Γ(κ−1/2)

. (4)

The parameter κ is a dimensionless positive real number, and
Γ represents the Gamma function. The thermal speeds are
Θ∥,⊥ =

√
2kBT κ

∥,⊥
/m with T κ

∥,⊥
=

κ

κ−3/2
T M
∥,⊥
> T M

∥,⊥
. If the

SKD is adopted as a global model, the highlighting of the new
effects of the suprathermal populations can be done by con-
trast with those previously obtained counting only on the bi-
Maxwellian core. However, the latter can be obtained directly
in the limit κ → ∞, when the Θ∥,⊥ parameters approximate
the core thermal velocities Θ∥,⊥ → θM∥,M⊥ and are therefore
independent of κ (Lazar, Poedts, and Fichtner, 2015; Lazar,
Fichtner, and Yoon, 2016).

From kinetic theory, the magnetohydrodynamic equations
of fluid theory can be derived by forming velocity moments
Ml of the l-th order, where l ∈ {0,1,2, ...} (see general defini-
tions for scalar, vector and tensor moments in Scherer, Ficht-
ner, and Lazar, 2018). All moments should exist, meaning that
all Ml converge. For a Maxwellian distribution, this condition
is satisfied. However, for an SKD, Ml <∞ only for l < 2κ−1
(Scherer, Fichtner, and Lazar, 2018). To provide a meaning-
ful description of the plasma, a kinetic temperature must exist,
defined in fluid theory through the second velocity moment. If
one requires the second moment l = 2 to be well-defined, the
condition l < 2κ− 1 demands that κ > 3/2. However, obser-
vations have identified space plasmas with κ ≤ 3/2 (see, e.g.,
Gloeckler et al., 2012). To address these unphysical proper-
ties and the issue of divergent moments that hinder a closed
description of a physical system and imply undesired limita-
tions of the κ-parameter, the regularized κ-distribution (RKD)
fRKD was introduced (Scherer, Fichtner, and Lazar, 2018):

fRKD
(
v∥,v⊥,α

)
=NRKD

1+ v2
∥

κΘ2
∥

+
v2
⊥

κΘ2
⊥


−κ−1

× exp

−α2v2
∥

Θ2
∥

−
α2v2
⊥

Θ2
⊥


(5)

NRKD is a normalization factor, given by

NRKD =
1

π3/2Θ∥Θ
2
⊥W
. (6)

where

W = U
(

3
2
,
3−2κ

2
,α2κ

)
(7)

and U denotes the Tricomi function (Scherer et al., 2019).
Also it is possible to consider more general distributions with
a direction-dependent cut-off parameter (Scherer et al., 2020).
The dimensionless cut-off parameter α controls the strength of
the exponential decay and is independent of κ. The idea of the
RKD is to combine the SKD with an exponential Maxwellian-
like part, to dampen the tail of the distribution, preventing the
divergences associated with the SKD ensuring the existence
of all velocity moments. For a relativistic generalization of
the RKD, see Han Thanh, Scherer, and Fichtner (2022).

As shown in Fig. 1, left panel, the RKD’s power-law com-
ponent dominates at intermediate velocities compared to the
exponential function, reflecting the behavior of suprathermal
particles, while the latter dominates at very high velocities, re-
sulting in the desired cut-off. The significant advantage of the
RKD is that all velocity moments,

Ml(κ,α,Θ) ≡ NRKDI(κ,α, l,Θ), (8)

are well defined for all values of κ > 0 compared to SKD
(Lazar, Fichtner, and Yoon, 2016) or other similar attempts,
e.g., Shahzad et al. (2024). The integral I(κ,α, l,Θ) becomes
analytically solvable for all l ∈ {0,1,2, ...} and does not di-
verge, making all velocity moments calculable; see the analyt-
ical expressions derived in Scherer et al. (2019), including for
anisotropic RKDs with temperature anisotropies and skewed
or drifting distributions of beam-plasma systems. Therefore,
an unphysical limitation of κ is no longer necessary, and the
temperature is always well-defined as the second moment of
the RKD. The RKD is thus defined for any κ > 0, enabling
a closed description of a physical system using fluid equa-
tions at a macroscopic level. Furthermore, the RKD includes
an SKD and a Maxwellian distribution as limiting cases, as
shown in Fig. 1, left panel. In the limit α→ 0, the RKD recov-
ers the SKD from Eq. (3). In the limit κ→∞ and α→ 0, the
RKD recovers the Maxwellian distribution from Eq. (2) under
a suitable choice of Θ. In Fig. 1, right panel, the dual-core-
halo model is plotted: The Maxwellian core, with a higher
density, combined with a RKD halo with lower density.

The RKD has been successfully applied in practice, for
example, in macroscopic parameterizations of suprathermal
populations (Lazar et al., 2020), modeling of anisotropic dis-
tributions measured in situ in the solar wind (Scherer et al.,
2021), evaluation of transport coefficients in non-equilibrium
plasmas (Husidic et al., 2022), or Harris sheet equilibrium
modeling (Hau, Chang, and Lazar, 2023). Additionally, when
α is chosen small enough, the cut-off only occurs for veloc-
ities outside the measurement range, and an RKD fit applied
to measurement data provides the same results as those pre-
viously obtained through an SKD, eliminating the need for
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Core+Halo, κ = 2.0, α = 0.2

Core+Halo, κ = 2.0, α = 0.5

Core+Halo, κ = 1.5, α = 0.2

Core+Halo, κ = 1.0, α = 0.2

Core+Halo, κ = 1.0, α = 0.1

Core, β = 1.0

FIG. 1. In the left panel a comparison between SKD (red) and RKD, with different κ and α values, and Maxwellian (blue), normalized to
their maxima, with the same plasma beta of β = 1.0. When α→ 0 (black cross), the RKD approaches the SKD, while for an increasing α, the
Maxwellian case is reached. With a decreasing κ, the high energy tails become more prominent. In the right panel a comparison between the
different anisotropic core+halo VDFs (solid) and the Maxwellian Core (blue) with a density contrast nh/nc = 0.05. The RKD/SKD-limit halos
are presented with a dotted line. This represents our used core-halo model.

extensive conversion steps (Lazar and Fichtner, 2022). The
RKD retains the flexibility of the κ- distribution while ensur-
ing that all velocity moments converge. The RKD is thus
well-suited for describing space plasmas where nonthermal
features are significant. Overall, the RKD provides a physi-
cally consistent representation and interpretation of suprather-
mal particles.

The general dispersion tensor for RKDs has not been de-
rived yet, but the investigation of these modes is possible with
ALPS (Verscharen et al., 2018; Klein et al., 2023). Made
public in 2023, this numerical solver directly evaluates the
linear Vlasov-Maxwell dispersion relation in a plasma with
arbitrary gyrotropic background VDFs. Additionally, ALPS
addresses irregularities and challenges encountered with pre-
vious similar solvers (Astfalk and Jenko, 2017; Husidic et al.,
2020).

III. WAVE INSTABILITY IN NUMERICS: ALPS

We assume that the plasma fluctuations, specifically those
of the electric and magnetic fields (E and B) and those in the
VDF, are small enough to justify the application of linear the-
ory. To investigate plasma instabilities, one solves the kinetic
dispersion relation to obtain the complex frequency

ω(k) = ωr + iγ, (9)

where k is the wave vector, and ωr and γ denote the real and
imaginary parts of the frequency, respectively.

To obtain this solution, one uses the linearized Vlasov equa-
tion, providing an expression for the plasma susceptibilities
χ j for the j-th species (see Appendix A). These susceptibili-
ties are then related to the plasma’s dielectric tensor ϵ through

ϵ = 1+
∑

j

χ j. (10)

with the unity tensor 1.
From this, one can derive

n× (n×E)+ε ·E ≡D·E = 0, (11)

where n = kc/ω and c is the speed of light. Solving detD = 0
provides non-trivial solutions to Eq. (11) in terms of ω(k)
which are considered the solutions to the dispersion relation.
The ALPS code (Verscharen et al., 2018) will be used to ob-
tain these solutions.

ALPS, a parallelized numerical code written in Fortran-90,
is designed to solve Eq. (11) for various plasma conditions,
including hot non-relativistic and relativistic plasmas. The
code’s versatility allows for the examination of an arbitrary
number of species with equilibrium distribution functions f0 j,
accommodating arbitrary propagation directions with respect
to the undisturbed magnetic field (referred to as the ’back-
ground field’).

To utilize ALPS, users need to input numerical values for
f0, j(p⊥, p∥), where p∥,⊥ denote the parallel and perpendicular
components of momentum relative to the background field.
These values can be organized into an ASCII table. Addition-
ally, initial guesses for ωr and γ must be provided.

The code employs an iterative Newton-secant method to
solve Eq. (11), resulting in the determination of ωr(k) and
γ(k). For more details on its implementation and capabilities,
please refer to Verscharen et al. (2018).

IV. VALIDATION OF SOLVER ALPS

To begin with, the ALPS setup is validated against results
from Lazar et al. (2017), who solved Eq. (B1) and Eq. (B4)
via Mathematica. This validation extends earlier ones pre-
sented, e.g., in Verscharen et al. (2018). The VDFs are rep-
resented as a dual Maxwellian-κ-model in ALPS by using Eq
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(1) with fc = fM from Eq (2) and fh = fS KD from Eq (3). The
corresponding input VDFs are shown in Fig. 1, right panel.

The plasma frequency is ωh, j =
√

4πnhq2
j/m j, while Ω j =

q jB0/(m jc) is the non-relativistic gyrofrequency and vA,ref/c=
vA, j/c = B0/(

√
4πn jm jc) is the reference Alfvén speed, where

m j is the species rest mass, q j is the charge of the species,
n j is the density of the species and the index j refers to
the species, i.e. j = p for protons and j = e for electrons.
We use a parallel plasma beta of β j,c = 8πnckbT j,c,∥/B2

0 and
β j,h = 8πnhkbT j,h,∥/B2

0. Since it has been demonstrated in nu-
merous other studies that an SKD with a kappa-dependent
temperature T j,h = T j,h(κ) is the more natural choice, we will
only use those VDFs for our studies.

A. Electromagnetic electron cyclotron (EMEC) instability

Since whistler or EMEC waves propagate at frequencies
with ωr ≫ Ωp and have a right-hand circular polarization,
their interaction with protons is negligible, and hence the pro-
tons are described with an isotropic Maxwellian. Since the
halo in the solar wind plasma tends to be more anisotropic,
hotter, and less dense than the core, the latter is assumed to be
isotropic. There may also be cases where both the core and the
halo have isotropic populations, but as shown in Lazar et al.
(2018), in such instances, the (Maxwellian) core predomi-
nantly drive the instability, resulting in a negligible influence
of the halo. This would then limit the study of the influence
of different RKD halos (Maksimovic et al., 2005). A scenario
with a low plasma beta combined with a high anisotropy and
a high plasma beta combined with a low anisotropy is studied.

For the first case, the parameters are chosen as βe,c = 1,
βe,h = 0.05 and T⊥,e,c/T∥,e,c = 1 and T⊥,e,h/T∥,e,h = 3 with
nc/n = 0.9523 and nh/n = 0.0477, which means a core-halo
density contrast of η = nh/nc = 0.05. For case 2, the pa-
rameters are: βe,c = 1, βe,h = 1 and T⊥,e,c/T∥,e,c = 1.1 and
T⊥,e,h/T∥,e,h = 1 with nc/n = 0.9523 and nh/n = 0.0477, which
represents a core-halo density contrast of η = nh/nc = 0.05.
For a detailed interpretation of these EMEC cases, see Lazar
et al. (2017).

The resulting dispersion curves are presented in Fig. 2 and
Fig. 3. Shown is the frequency on the left side and growth rate
on the right side, with Maxwellian cases in blue and the SKD
cases in red. The solid lines represent the ALPS results, com-
pared to those obtained with Eq. (B1) with Mathematica, plot-
ted with crosses. The agreement for both the frequency and
the growth rate for the Maxwellian distribution and the SKD is
excellent for both cases, validating not only the solver ALPS
itself, but also the implementation of our core-halo model, so-
lidifying the derived RKD results in the following section.

B. Electron Firehose Instability (EFHI)

Furthermore, the ALPS setup is tested against similar re-
sults from Lazar et al. (2017) for the parallel EFHI. As before,
the electrons are assumed to be a dual-core-halo plasma, with

the following parameters: βe,c = 1, βe,h = 4 and T⊥,e,c/T∥,e,c = 1
and T⊥,e,h/T∥,e,h = 0.6 with nc/n = 0.9523 and nh/n = 0.0477,
η = 0.05. The protons need to be described with a dual-core-
halo model too, since at typical EFHI frequencies, they can
interact with the electrons. For the protons, an isotropic core
T⊥,p,c/T∥,p,c = 1.0 and isotropic halo T⊥,p,h/T∥,p,h = 1.0 with
βp,c = 1, βp,h = 4 will be used.

In Fig. 4, the dispersion curves for the EFHI, with fre-
quency on the left-hand side and growth rate on the right-
hand side are shown, with the ALPS results plotted with solid
lines, compared to the ones derived with Mathematica by
solving Eq. (B4) derived in Lazar et al. (2017), represented
with crosses. The computations are again performed for a
Maxwellian (blue) and a SKD with κ = 2.0 (red). The agree-
ment is also excellent. Note that the results for the Maxwellian
case differ from those presented in Lazar et al. (2017), likely
due to differences in earlier versions of Mathematica.

V. UNSTABLE SOLUTIONS WITH ANISOTROPIC RKD HALO

We model the electron halo population with an anisotropic
regularized bi-κ-distribution, as defined in Eq. (5). Examples
of anisotropic core-halo RKDs, used in ALPS, are displayed
in Fig. 8 and Fig. 9. While Fig. 8 is in principal the same
as Fig. 1, but a more closer representation of the VDFs that
are implemented in ALPS, Fig. 9 shows contour plots of f =
(nc/n) fc+ (nh/n) fh for three different values of κ (from left to
right (2,1.5,1.0)) with the same α = 0.2, normalized to their
maxima. One can see the anisotropy in parallel direction and
the effect of lower κ-values, i.e.: the decrease of f for κ = 1.0
with increasing velocity is noticable less steeper than for κ =
2.0. The RKD cases allow further investigation into the effects
of modifying the suprathermal tail through the parameters κ
and α, revealing their interplay in defining plasma stability.

A. EMEC Instability with RKD Halo

The results for the first case (Ae,h = 3.0, βe,h = 0.05) are
shown in Fig. 5, with frequency in the panel on the left-hand
side and growth rate in the panel on the right-hand side. RKDs
with the same α are plotted in the same dashed style, while the
Maxwellian and Maxwellian-like curves are dashed-dotted.

First, the RKD with κ = 2 and α = 0 (dotted black) lead to
the same results as the SKD with κ = 2 (solid red), since there
is no cut-off of the RKDs suprathermal tails. Both curves,
in frequency and growth rate, agree very well, validating the
implementing of the RKD in ALPS. While the frequency is
not expected to vary strongly for the different VDFs, (ωr/Ωe
generally increases with the wave number kde), the choice
of the latter should impact the growth rates noticeably. The
RKD distributions exhibit varying growth rates depending on
the values of κ and α. As α increases (and keeping κ con-
stant), resulting in a more Maxwellian-like distribution, the
overall growth rates decrease (with a lower maximum, shifted
to higher wave numbers), indicating reduced instability due
to the less prominent high energy tails. So as expected, the
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RKD approaches the Maxwellian results with an increasing
cut-off, indicating a clear ordering in α regarding the max-
imum growth rate. Conversely, lower α values, especially
when combined with lower κ (e.g., κ = 1.0), lead to higher
growth rates, showing that the distribution becomes more non-
thermal and thus more likely to be unstable.

The cut-off parameter can act as a modulation parameter:
The RDK with κ = 1.5 and α = 0.2 (yellow dotted) has ob-
viously a larger suprathermal population than the RKDs with
κ = 2 and α ≤ 0.2, leading to a higher growth rate compared
to the latter ones. However, the RDK with κ = 1.5 and α = 0.2
still results in a lower maximum growth rate than the RKD
with κ = 2.0 and no cut-off. When using an even higher
κ = 1.0 (green dashed), the high energy tails, even with a cut-
off α = 0.2, are dominant enough to exhibit a much higher
growth rate, and even more so for κ= 1.0 with α= 0.1 (double-
dotted dashed, magenta), when the growth rate evolves into a

much wider peak, illustrating enhanced instability over an ex-
tended range of wave numbers reflecting the combined impact
of a minimal cut-off and strong suprathermal presence.

This pattern signifies, as expected, that reducing κ (increas-
ing the suprathermal component) without increasing α (keep-
ing the cut-off relatively weak) results in a more destabilizing
effect. Both of the results with high growth rates would not
be achievable when using a SKD. The mentioned plots of the
VDFs, Fig. 8 and Fig. 9, are in plausible agreement with the
obtained results, i.e.: The density of the halo component for
κ = 2.0 and α = 0.0 is higher at high velocities than for κ = 1.5
and α = 0.2, resulting in a higher growth rate for the former.

The results for the second case (Ae,h = 1.1, βh = 1) are
shown in Fig. 6. As expected, the frequency hardly varies
between the different VDFs. Again, the results for the RKD
with κ = 2 and no cut-off α = 0 (dotted black) are in very good
agreement with the SKDs results. When α is increased to
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0.2 (dashed purple) the peak growth rate shifts toward larger
wave vectors, with the maximum value slightly decreasing.
This reduction in growth rate and shift in peak location sig-
nals a dampening effect due to the exponential cut-off, which
begins to moderate the influence of the suprathermal tail. For
α= 0.5 (dash-dotted teal), this effect is even more pronounced,
as the maximum growth rate peak shifts to higher wavenum-
bers, comparable to the Maxwellian case, and the maximum
growth rate diminishes further, even below the the Maxwellian
case. Similar to the first case, when κ is decreased to 1.5,
but with a cut-off α = 0.2 (dashed orange), the growth rate
is very similar to the SKD/RKD without cut-off, with differ-
ences mostly at low wavenumbers. For the RKD cases with
κ = 1.0 (dashed green and double-dotted dashed magenta),
which represent distributions with the strongest suprathermal
effects, the growth rate for both α cases exhibits a higher max-
imum growth rate at low values of k. Notably, the α = 0.1 case
achieves the highest peak growth rate.

Following Husidic et al. (2022), we introduce the ratios
Rγ = γmax,i/γmax,SKD and Rk = kmax,i/kmax,SKD to compare the
maximum growth rate and corresponding k-value of the SKD
with those of the other VDFs i. The results are presented in
table I for the first case and in Table II for the second case.
The results for Rγ show the described and expected behavior
in both cases, although more prominent for the case with a
higher anisotropy and Rk has also a clear ordering.

B. EFHI with RDK Halo

The EFHI is also extended to cases with different RKD ha-
los, using the same combination of κ and α as for the EMEC
cases. The results are shown in Fig 7, with the frequency in
the panel on the left-hand side and the growth rate in the panel
on the right-hand side. The structure of the chosen plot styles
is the same as for the EMEC, the results for the calculated
values of Rγ and Rk can be obtained form Table III. The VDF

with κ = 2 and no cut-off α = 0 leads to the same results as the
SKD case, as expected. Increasing α to 0.2 introduces a subtle
flattening of the increase of the frequency for low wave num-
bers and shifts the maximum growth rate to higher values of k.
While the shape of the peak broadens, the maximum growth
rate increases. With a further increase to α = 0.5 (dash-dotted
teal), the frequency profile is closely approaching the behav-
ior of the Maxwellian case. The growth rate in this case ex-
hibits a low maximum value, comparable to the Maxwellian
case, just shifted to a lower value of k. The overall shape
is also similar to the Maxwellian case, with near identity for
kc/ωh,p < 2, suggesting significant stabilization in the pres-
ence of a strong exponential cut-off. When κ is decreased to
1.5, while keeping the cut-off at α= 0.2, the maximum growth
rate increases and is shifted to a higher wave number, com-
pared to the SKD/RKD no cut-off case. Decreasing κ even
further to 1.0, with the same α = 0.2, leads to a noticeable
higher maximum growth rate, with a more prominent, sharper
peak and with only a slight shift to higher k values. For a
smaller α = 0.1, the frequency shows sharp initial rises be-
fore quickly plateauing, compared to the SKD/RKD no cut-
off results. The maximum growth rate is, compared to the
previously case with higher α = 0.2, only slightly increased.
The peak however, is much narrower at lower wave numbers
(in comparison to the SKD/RKD no cut-off case), covering a
much smaller range of k values. Overall the RKD halo model
(e.g., Fig. 8) effectively illustrates the substantial impact that
varying suprathermal components have on the EFHI, under-
line the flexibility of RKD models in capturing diverse plasma
environments, with even highly nonthermal components, and
provides a useful framework for exploring these instabilities.

VI. SUMMARY

We study the dispersion relation and linear instability of
plasma systems with a background distribution function that
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follows a regularized bi-κ-halo model. Low κ values, which
enhance the suprathermal population, significantly increase
growth rates and hence amplify instability. Conversely,
higher α values have a stabilizing influence by lowering the
suprathermal tail, shifting the behavior toward that of the
Maxwellian or SKD and reducing the maximum growth rates
and instability. These findings underline the importance of
core-halo characteristics in determining plasma wave stabil-
ity.

A κ < 3/2 and moderate α significantly enhance wave in-

stability. This parameter combination would not be accessi-
ble for a plasma representation with an SKD. These findings
are significant for understanding the conditions under which
EMEC waves and EFHI waves become unstable in space and
astrophysical plasmas. The enhanced instability for RKD dis-
tributions with κ < 3/2 and lower α values are particularly
relevant for environments with prevalent nonthermal popula-
tions, such as the solar wind. Furthermore, the cut-off param-
eter α can be used as a modulation parameter, which is not
present in the SKD and suggests that RKDs are a better model
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for capturing the effects of nonthermal populations in certain
plasma environments. The study also demonstrated that ALPS
is a powerful and versatile numerical tool to investigate insta-
bilities of arbitrary VDFs, justifying its use for further studies.
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FIG. 9. Contour plots of the different anisotopic RKD Core-Halo VDFs normalized to their maximums. With κ = (2,1.5,1) from left to right and
with α = 0.2 for the first and second plot and α = 0.1 for the third one . The anisotropy in parallel directions is clearly visible. A lower κ-value
leads to a less steeper decrease of the distribution function. Note that ALPS uses a cylindrical coordinate system, where v⊥ ≥ 0, however, for
illustrative purposes, negative v⊥ values are also shown.

κ α Rγ Rk

∞ - 0.0 0.0
2.0 0.5 0.128 0.970
2.0 0.2 0.731 1.016
2.0 0.0 1.0 1.0
1.5 0.2 0.947 1.0
1.0 0.2 1.269 0.985
1.0 0.1 1.633 0.939

TABLE I. Comparison of maximum growth rate and corresponding wave numbers (both normalized to the values of the SKD) for the EMEC
case 1.

Appendix A: Dispersion relation in ALPS

The susceptibilities can be expressed via

χ j =
ω2

p j

ωΩ j

∫ ∞

0
2πp⊥dp⊥

∫ +∞

−∞

dp∥
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ê∥ê∥
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∂p∥
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)
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∥
+
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Ω j p⊥U
ω− k∥v∥−nΩ j
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 (A1)

Here, ωp j ≡
√

4πn jq2
j/m j is the plasma frequency of the

species. The tensor Tn is defined as

Tn ≡


n2 J2
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 ,
with z≡ k⊥v⊥/Ω j, and Jn ≡ Jn(z) as the n th-order Bessel func-
tion. And

U ≡
∂ f0 j

∂p⊥
+

k∥
ω

(
v⊥
∂ f0 j

∂p∥
− v∥
∂ f0 j

∂p⊥

)
(A2)

Appendix B: Dispersion relation for dual Maxwellian-κ-model

The dispersion relations for the dual Maxwellian-κ-model
were derived in Lazar et al. (2017) and are solved with Math-
ematica for this paper.
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κ α Rγ Rk

∞ - 0.899 1.185
2.0 0.5 0.816 1.173
2.0 0.2 0.977 1.108
2.0 0.0 1.0 1.0
1.5 0.2 0.993 1.021
1.0 0.2 1.029 0.933
1.0 0.1 1.049 0.868

TABLE II. Comparison of maximum growth rate and corresponding wave numbers (both normalized to the values of the SKD) for the EMEC
case 2.

κ α Rγ Rk

∞ - 0.305 3.545
2.0 0.5 0.317 2.807
2.0 0.2 1.064 1.569
2.0 0.0 1.0 1.0
1.5 0.2 1.196 1.355
1.0 0.2 1.363 1.163
1.0 0.1 1.380 0.675

TABLE III. Comparison of maximum growth rate and corresponding wave numbers (both normalized to the values of the SKD) for the EFHI
case 1.

1. EMEC case

For the EMEC instability, the dispersion relation reads

(kc/ωh,e)2 = Ae,h−1+
Ae,h(ω/|Ωe| −1)+1

kc/ωh,e
√

a2βe,h
Zκ

 ω/|Ωe| −1

kc/ωh,e
√

a2βe,h


+

1
η

 ω/|Ωe|

kc/ωh,e
√
ηβe,c

ZM

 ω/|Ωe| −1

kc/ωh,e
√
ηβe,c


(B1)

with a = (1−1.5/κ)0.5 and the plasma dispersion function ZM
for the Maxwellian case

Z j,M
(
ξ±j,M

)
=

1
π1/2

∫ ∞

−∞

exp
(
−x2

)
x− ξ±j,M

dt, J
(
ξ±j,M

)
> 0 (B2)

with the argument ξ±j,M = (ω±Ω j)/(kθ j,∥), where ± denotes the
circular polarization and the plasma dispersion function Zκ for
the SKD

Z j,κ
(
ξ±j,k

)
=

1
π1/2κ1/2

Γ(κ)
Γ(κ−1/2)

×

∫ ∞

−∞

(
1+ x2/κ

)−κ
x− ξ±j,κ

dx,J
(
ξ±j,k

)
> 0,

(B3)

with the argument ξ±j,κ = (ω±Ω j)/(kθ j,∥).

2. EFHI case

For the EFHI, the dispersion relation reads

(kc/ωh,p)2 = µ

[
Ae,h−1+ Ae,h(ω/Ωp+µ)−µ

kc/ωh,p
√
α2µβe,h
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(B4)

with µ = mp/me = 1836 and the other parameters as above.
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